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Abstract. | use the case of Ptolemy versus Copernicus to distinguish
observational, empirical, modal, and virtue (in)equivalence, and to show that
during the two hundred years between Copernicus’s De Revolutionibus and
Du Chatelet’s Institutions de Physique we learned a great deal about how to
mobilize these different kinds of inequivalences in the process of physical
theorizing, and to identify those elements of our theories that are stable and

likely to persist through theory change.

What follows is a written version of a talk given at the workshop on Equivalent

Theories in Science and Metaphysics, held at Princeton on March 20-21, 2015, and is

best read in conjunction with the slides that were used for this talk, posted separately.

Please cite this as a manuscript, thank you!

[slide 1, title slide]

Introduction

[slide 2]

I'm going to talk about an old and familiar example of equivalence between theories:

Ptolemaic astronomy and Copernicus’s astronomical system. I like this example



because it’s simple, it's familiar, and it’s at the heart of what drives some really
interesting developments in scientific methodology.

The key question - and it’s one which was a major component of the
epistemological crisis of the seventeenth century - is this: “Given two
observationally equivalent theories, how should we respond?” We can divide this
into two questions. First, “How (if at all) do we decide between them?” This is the
question that is immediate and pressing. Then, there is a second question, which
arises on further reflection and which has implications for the longer term. This
question concerns whether or not we can have confidence that the choice we make
(if we do pick one of the theories over the other) is going to survive the test of time,
rather than turning out to be observationally equivalent to some other completely
different theory that we end up picking in the future, so that the one we’ve chosen
now ends up being rejected too. So our second question is this: “How (if at all) can
we establish something in the sciences that is stable and likely to last?” And if you
remember your Descartes, this is exactly the question that he poses at the start of
his First Meditation.

The main point of my talk is going to be to make vivid that between 1543
(which is when Copernicus’s De Revolutionibus was published) and 1740 (when we
get Du Chatelet’s Institutions de Physique), we learned a lot about how to respond to
the epistemic challenges posed by equivalent theories. [ will spell some of this out in

detail.

[slide 3]

In section 1, | begin by setting up the basic equivalences and inequivalences
between Ptolemaic and Copernicus’s astronomical systems. In sections 2 and 3 |
consider two different responses to the observational equivalence of these two
systems, due to Kepler and Descartes respectively. In section 4 I skip forward a
century to Du Chatelet, to draw together methodological lessons learned in the wake
of Kepler, Descartes, Huygens, Leibniz and Newton. In section 5 [ end with some

concluding remarks on these methodological lessons, and on what we can expect



theories developed within this framework to deliver. In particular, I suggest that
scientific realism as formulated by van Fraassen attributes goals to science that are

not aligned with this methodology.

[slide 4]

1.Equivalences and inequivalences in Ptolemy versus Copernicus

1.1 Geometrical equivalence and observational equivalence

The Ptolemaic and Copernicus’s system of astronomy provide a model for each
planet built from circular motion. Though the Ptolemaic model for a given planet is
geocentric and Copernicus’s heliocentric, these models for a given planet are
geometrically equivalent. In the Ptolemaic model, the Earth is situated at the center
of the deferent of the planet in question, and then the planet moves on an epicycle
which rotates as its center moves around the deferent. This can be seen in the
lefthand diagram on the slide. The blue dot at the center is the Earth, the blue circle
is the deferent, the red circle is the epicycle, centered on the deferent, and the red
dot is the planet. The yellow line is the line of sight from the Earth through the
planet to the background of the fixed stars. This is what we do to plot the motion of
a planet: we plot its path relative to the background of the fixed stars. This is a two
dimensional path, and is what is observable. In Copernicus’s model, the Earth is on
its own orbit, as it the planet. This is shown in the right hand diagram on the slide.
The blue dot is again the Earth. The yellow dot is the Sun, and the red circle is the
orbit of the Earth around the Sun. The red dot is the planet of interest, and the blue
circle is now the orbit of that planet around the Sun. The yellow line is once again
the line of sight from the Earth through the planet to the background of the fixed
stars. There is geometrical equivalence between the model offered by Ptolemy and
the model offered by Copernicus. If you hit “play” on these diagrams, you will see
that they produce exactly the same observable motion of the planet with respect to

the background of the fixed stars.



There are subtleties, arising from Copernicus’s refusal to make use of
Ptolemy’s equant, for example, but the central epistemological challenge arises from
the observational equivalence of the geocentric Ptolemaic system and the
heliocentric geometric system. By “observational equivalence” I mean that both
theories are compatible with the actual observations. This observational
equivalence arises from the geometric equivalence of the basic models pictured on

the slide.

1.2 Empirical (in)equivalence and modal (in)equivalence

[slide 5]

So, for each planet, Ptolemy’s and Copernicus’s systems are geometrically
equivalent, and observationally equivalent. Nevertheless, they are empirically
inequivalent: once you nest the models for each planet together, into a planetary
system, Copernicus’s theory rules out possibilities that Ptolemy’s theory does not.

For example, Ptolemy’s system allows for the possibility that we could
observe Mercury and Venus on the opposite side of the sky from the Sun. This is
shown in the right-hand diagram on the slide. The Sun is over on one side of the sky,
as viewed from Earth, and Mercury is on the opposite side of the sky. In fact, this is
never observed, but Ptolemy’s theory allows for it. In Copernicus’s system, however,
Mercury and Venus, as viewed from Earth, will always be within a small angular
distance from the Sun, and it is impossible for them to be seen on the opposite side of
the sky from the Sun. This can be seen in the lefthand diagram on the slide. As
viewed from Earth, the smaller orbits of Venus and Mercury keep them in close
angular proximity to the Sun. Therefore, the two theories are empirically
inequivalent: while they are equally compatible with the actual observations (i.e. the
are observationally equivalent), they differ over which observations are possible
and impossible.

A second example is the ordering and spacing of the planets. As we saw

([slide 4]), each planet is modelled individually using two circles: the deferent and



epicycle in Ptolemy’s system, and the planet’s orbit plus the Earth’s orbit in
Copernicus’s system. In Ptolemy’s system, what matters is the relative size of the
deferent to the epicycle, for each individual planet, but there is nothing to constrain
the relative size of the deferent for one planet as compared to the deferent of
another planet. When it comes to the relative sizes of the deferents, and therefore
the ordering and spacing of the planets, there is nothing in Ptolemy’s system to
allow such comparisons. In other words, Ptolemy’s system does not determine the
relative spacing between the planets, nor even the ordering of the planets. Things
are different in Copernicus’s system: the second circle (the red circle in the
diagrams) that is the epicycle in Ptolemy’s system, is the Earth’s orbit in
Copernicus’s system (we are considering the outer planets). The Earth’s orbit
appears in the model for each individual planet, and therefore provides a standard
of size across the models for each planet. Not only is the relative size of the blue and
red circles fixed, but the red circle has the same size across the models for every
planet. The consequence of this is that Copernicus’s system determines a unique
ordering of the planets and the relative distances between the planetary orbits.
The spacing and distances were not, at the time, observable. What was
observable was the two-dimensional trajectories of the planets against the
background of the fixed stars. There was no way to get three-dimensional
information on the order and spacing of the planets out of this two-dimensional
information using Ptolemaic astronomy. (In practice, astronomers used the period
of the planetary orbits as a guide to their order.) Copernicus’s theory, on the other
hand, provides a way of getting from two-dimensional information to three-
dimensional information. This is unobservable unless we can get off the Earth and
travel out among the planets (or, less extravagantly, make use of the relative
enlargement of the planets provided by a given telescope, but the development of
the telescope doesn’t take place until the early 1600s), but is nevertheless an
empirical inequivalence: Copernicus’s system rules out relative spacings of the
planets that Ptolemy’s system allows, and these are in principle observable, so the

theories are empirically inequivalent.



Empirical inequivalence - differing over which observations are possible and
impossible - is a case of modal inequivalence of theories. What's epistemically
interesting, I take it, is cases where we have theories that are observationally
equivalent but modally inequivalent.

My empiricist tendencies make me inclined to say that, in the end, any
interesting modal equivalence must be an empirical inequivalence, but we should
not collapse the two. (And “in the end” here matters, as a warning not to be
premature ruling out modal inequivalences that are not also empirical
inequivalences, and as a methodological recommendation, that we should strive to

turn modal inequivalences into empirical inequivalences.)

[slide 6]

Given the observational equivalence but modal inequivalence of Ptolemy versus
Copernicus, is there an epistemically responsible way of deciding between them? In

what follow, [ will consider the responses of Kepler and Descartes.

[slide 7]

2. Kepler

2.1 Instrumental (in)equivalence and virtue (in)equivalence

Kepler came from a good family, but one which was no longer well-off. Kepler’s
grandfather ran the family, and his father wasn’t around much, coming and going
until Kepler was 16, at which point he left and never came back. Kepler was raised
by his mother, Katharina, and he was her first child. He was small and sickly, but
fortunately he survived, and he did well at school -- he was selected for an education
designed for those going on to university. He was awarded a scholarship by the local
Duke, and in 1589 at the age of 17 (rising 18) he went off to the University of

Tiibingen. The two areas that interested him most were mathematics (including



astronomy) and theology. His mathematics and astronomy teacher was Michael
Maestlin. At this time, where Copernicus’s theory was taught, it was taught as
mathematical astronomy, as a device for performing calculations, not as the truth
about the structure of the cosmos. Maestlin was different. He was one of the first
astronomers who took Copernicus’s cosmological claims seriously, partly because of
the 1577 comet. And so Kepler was taught astronomy by one of the few - perhaps
the only - convinced Copernican teaching at a university in Europe at the time.

Kepler’s first major astronomical publication, and the book which made his
name, was Mysterium Cosmographicum, published in 1596. In this book, Kepler
argues for the Copernican system, using a range of arguments, as we’ll see. Kepler
accepted the geometrical and observational equivalence of Ptolemy’s and
Copernicus’s systems. He also accepted their instrumental inequivalence: by the late
1500s, many mathematical astronomers used Copernicus’s system for the
calculational advantages that it offered. But no-one (that [ know of) saw in this a
reason to prefer Copernicus’s system as giving the structure of our planetary
system, and Kepler did not use the instrumental inequivalence as the basis of an
argument either.

Kepler did use empirical inequivalence to argue for Copernicus’s system, and
specifically the empirical inequivalences I mentioned above, concerning the
observed position of Mercury and Venus in the sky relative to the Sun, and the
determinate ordering and spacing of the planets that follows from Copernicus’s
system. However, these empirical inequivalences were well-known, and few at the
time were persuaded by them.

Kepler also used what I shall call “virtue inequivalence”. In our current
discussions of theory choice, we have become used to speaking about theoretical
“virtues”, and I shall use this as an umbrella term for a range of considerations that
have been used to help guide theory development and theory choice. I will say more
explictly what counts as a “virtue” once [ have put more examples on the table.

Kepler argued for Copernicus’s system on the basis of three virtues:

simplicity, harmony and causality.



In the case of simplicity, Kepler appealed to Copernicus’s great insight: in
Ptolemy’s system, the basic planetary motion is motion around the deferent, and in
order to account for retrograde motion, and second circle must be added - the
major epicycle - thereby complicating the model. In Copernicus’s system, the basic
planetary motion is again a single circular orbit, and nothing needs to be added to
the model in order to recover retrograde motion: with the Earth in motion, the
appearance of retrograde motion of a planet arises from the relative motion
between the Earth (from where we are observing the planet of interest) and the
planet we are observing. So, simply by putting the Earth into motion, Copernicus
removes the need for any major epicycles, and thereby implements a dramatic
simplification of mathematical astronomy. Kepler took this to count strongly in
favor of Copernicus’s system. However, this was also a well-known feature of
Copernicus’s system at the time, and few were persuaded by this argument from
simplicity.

Kepler needed a stronger argument, and when he found it, he reportedly

wept tears of joy.

2.2 Mysterium Cosmographicum: Kepler’s arguments from harmony and

causality

[slide 8]

In his biography of Kepler, John Banville deliciously brings to life Kepler’'s moment

of discovery as follows (Banville, 1981, p. 27):

“The day was warm and bright. A fly buzzed in the tall window, a rhomb of
sunlight lay at his [i.e. Kepler’s] feet. His students, stunned with boredom,
gazed over his head out of glazed eyes. He was demonstrating a theorem out
of Euclid - afterwards, try as he might, he could not remember which - and
had prepared on the blackboard an equilateral triangle. He took up the big

wooden compass, and immediately, as it always contrived to do, the



monstrous thing bit him. With his wounded thumb in his month he turned to
the easel and began to trace two circles, one within the triangle touching it on
its three sides, the second circumscribed and intersecting the vertices. He
stepped back, into that box of dusty sunlight, and blinked, and suddenly
something, his heart perhaps, dropped and bounced, like an athlete
performing a miraculous feat upon a trampoline, and he thought, with
rapturous inconsequence: [ shall live forever. The ratio of the outer to the
inner circle was identical with that of the orbits of Saturn and Jupiter, the
furthermost planetsm and here, within these circles, determining that ration,
was inscribed an equilateral triangle, the fundamental figure in geometry.
Put therefore between the orbits of Jupiter and Mars a square, between Mars
and earth a pentagon, between earth and Venus a ... Yes, O yes. The diagram,
the easel, the very walls of the room dissolved to a shimmering liquid, and
young Master Kepler’s lucky pupils were treated to the rare and gratifying
spectacle of a teach swabbing tears from his eyes and trumpeting juicily into

a dirty handkerchief.”

What Kepler had done was to draw a circle with an equilateral triangle inscribed,
and then another circle inscribed in the triangle. The ratio of the large circle to the
small circle was about the ratio of Saturn’s orbit to Jupiter’s orbit.

Perhaps a square inside this circle, and then a circle in that square would give him
Mars’ orbit. This was what made him so excited: the prospect of uncovering a
beautiful geometric harmony underlying the spacing of the planets in the
Copernican system.

However, it didn’t work. Depsite Kepler’s best efforts, this first proposal with
2-dimensional circles, triangles and squares didn’t work out. But the universe is 3-
dimensional, not 2-dimensional! What if he used spheres instead of circles and 3-
dimensional polygons instead of 2-dimensional shapes? This time, Kepler found
what he was looking for.

There are exactly 5 regular polygons - no more, no less. Kepler discovered

that if you put the Sun at the center, and if you nest spheres among these regular



polygons, you uncover a beautiful harmony in the arrangement of our planetary

system. Here is how Kepler recalled his discovery, in his own words (for an

animation, see slide 8, but note that this animation was desigend for a domed

projection system and is less impressive when viewed on a 2-D screen!):

The earth’s circle is the measure of all things.
Circumscribe a dodecahedron around it.

The circle surrounding it will be Mars.
Circumscribe a tetrahedron around Mars.

The circle surrounding it will be Jupiter.
Circumscribe a cube around Jupiter.

The surrounding circle will be Saturn.

Now, inscribe an icosahedron inside the earth.
The circle inscribed in it will be Venus.
Inscribe an octahedron inside Venus.

The circle inscribed in it will be Mercury.

The number of shells gives the number of planets in

Mercury
octahedron
Venus
icosahedron
Earth
dodecahedron
Mars
tetrahedron
Jupiter
cube

Saturn

Copernicus’s system (and disagrees with the number in Ptolemy’s), and the spacing

of the shells gives the spacing of Copernicus’s orbits (something not undetermined

in Ptolemy’s system). In other words, hidden in Copernicus’s orbits (unlike

Ptolemy’s) is a deep structure, an inner harmony. This is what Kepler has uncovered

and laid before our eyes, thereby arguing for Copernicus’s system on the basis of

harmony.

Kepler’s Platonic Solids model of the cosmos is the centerpiece of Mysterium

Cosmographicum. With it, he offers a new argument for Copernicus’s system, and

one which stayed with Kepler for the rest of his life. However, despite the beauty of

the model, few were persuaded by it.

[slide 9]

10




The final argument offered by Kepler in Mysterium Cosmographicum is an
argument from causality. Kepler went beyond Copernicus in his commitment to
Copernicus’s system, insisting that the Sun be located at the center of the planetary
orbits, and arguing that rather than simply being the lamp of the cosmos (as
Copernicus had argued) the Sun is the motor of the cosmos, driving the planets
around in their orbits. Kepler believed he could support this claim if he could find a
relationship between the distance of the planet from the Sun and the speed of that
planet’s orbital motion. As we saw above (section 1.2), Copernicus’s system
determines the relative radii of the planetary orbits, so if Kepler was able to find a
relationship between the determined distance of the planet to the Sun and the speed
of the planet (here the eccentricity of the orbits, which we have ignored so far, is
important), this would enable him to provide a strong argument for Copernicus’s
system. Kepler attempted this in Mysterium Cosmographicum, but he wasn’t able to
find a relationship that worked, so the argument remained incomplete.

For our purposes, what is important is that Kepler was using causality -
specifically, the idea that the Sun is the physical cause of the motions of the planets -
as a tool for trying to develop Copernicus’s theory. The physical inequivalence
between the Aristotelian cosmology, with which Ptolemaic astronomy was
associated, and whatever cosmology might be developed to accompany Copernicus’s
mathematical astronomy, was of course one of the major objections to Copernicus’s
astronomy. One of Kepler’s driving motivations was to develop a physical cosmology
consistent with the new astronomy, and his starting point was according a causal
role to the Sun in the motions of the planets. Kepler was using causality as a means
of guiding and constraining his theory development. According to the taxonomy I
am developing here, this use of causality - which does not, in itself, involve
observational, empirical, or modal inequivalences, though it may lead to these as
consequences - falls under the umbrella of virtue inequivalences.

So, to sum up where we are so far, having considered Kepler’s Mysterium
Cosmographicum. At this point in time, Kepler accepted the geometrical and
observational equivalence of Ptolemy’s and Copernicus’s theories. He also accepted

their instrumental inequivalence, but did not use this to argue for Copernicus’s

11



system. Instead, he first appealed the well-known empirical inequivalences, and to
the virtue inequivalence of simplicity that was Copernicus’s great insight, but these
did not persuade many. Second, he developed new arguments, both based on virtue
in equivalence, once of which appealed to harmony (his Platonic solids model) and
the other of which appealed to causality (his attempted distance-speed

relationships). Few were persuaded by these new arguments, either.

2.3 Astronomia Nova: from virtue inequivalence to observational

inequivalence

[slide 10]

Following a long struggle, Kepler published his first two laws of planetary motion in
his Astronomia Nova of 1609. These two laws say:

1. The orbits of the planets are ellipses with the Sun at one focus.

2. The speeds of the planets vary according to equal areas in equal times (or, more
carefully: the radial segment from the Sun to the planet sweeps out equal areas in
equal times).

These two laws modify Copernicus’s system, changing the shape of the orbits from
the planets (from circles to ellipses) and the speeds of the planets (from equal
angles in equal times (i.e. uniform circular motion) to equal areas in equal times).
Thus, they attribute a different shape to the orbits of the planets from Ptolemy, and
different speeds, and so Kepler’s version of the Copernican system and Ptolemy’s
system are observationally inequivalent.

The process by which Kepler broke the observational equivalence between
Ptolemaic astronomy and the Copernican system is worth noting explicitly. Kepler
started with observationally equivalent theories. These theories were nevertheless
empirically inequivalent, and Kepler took aspects of this to favor one theory over
the other. They were also virtue inequivalent (simplicity, harmony, causality), and

he used this to construct arguments in support of his preferred option. In the end,

12



after much hard labor, use of his causal story led him to develop a new version of

Copernicus’s theory that was observationally inequivalent to Ptolemy’s theory.

2.4 Lessons from Kepler

[slide 11]

Recall our original question: Given two observationally equivalent theories, how
should we respond? We broke this into two, the first of which is: How (if at all) do
we decide between them? Kepler’s response to this first question focuses our
attention on the diachronic process by which other kinds of inequivalence between
two theories can be mobilized in theory development, with the upshot in this case
being the breaking observational equivalence.

In the case we have looked at, Kepler used virtue inequivalence. Another
familiar example is Galileo’s telescope and the phases of Venus. Assume, for the sake
of argument, that both Ptolemy and Copernicus allow that Venus may be an
extended body, and that it may have no light of its own (reflecting light from the
Sun). Ptolemy’s and Copernicus’s systems make different predictions concerning the
possible phases of Venus. Prior to the development of the telescope, any such phases
were unobservable, and therefore this difference is an empirical inequivalence
between the theories but not an observational inequivalence. However, with the
development of the telescope, the phases became observable, and in 1613 Galileo
published his observations of the phases of Venus. Thus, an empirical inequivalence
becomes an observational inequivalence, and as it turns out the observed phases of
Venus are incompatible with the Ptolemaic system but compatible with
Copernicus’s system. Galileo used this to argue in favor of Copernicus’s system.

This attention to the diachonic process by which different kinds of
equivalence and inequivalence may be mobilized in theory choice leads us directly
into consideration of our second question: How (if at all) can we establsih
something in the sciences stable and likely to last? Or, focusing specifically on the

epistemic challenge from observational equivalence: Given the occurrence of

13



observational equivalence, why should we have confidence in the stability of the
theory we now accept?
Kepler makes some remarks that can be used to address this question. He

raises the following worry, in Mysterium Cosmographicum:

[slide 12]

“But you may object that it can to some extent still be said, and to some
extent could once have been said about the old tables and hypotheses, that
they satisfy the appearances, yet they are rejected by Copernicus as false; and
that by the same logic the reply could be made to Copernicus that although
he gives an excellent explanation for what is observed, yet he is wrong in his

hypothesis.” (Kepler, 1596)

He then offers the following, as a response to this worry:

[slide 13]

“For it can happen that the same conclusion follows from two suppositions
which are different in species, because they are both included in the same

genus, and the point in question is a consequence of the genus.”

[slide 14]

Familiar in this is the suggestion of “selective realism” as a means of responding to
worries arising from theory change. In current philosophy of science, this is one
route by which scientific realists attempt to respond to the pessimistic meta-
induction. In Kepler’s terminology, the proposal is that there can be continuity in the
genus despite changes in species.

Kepler spells out his proposal in more detail as follows. The observed

motions of stars depend on two parameters (among others): the relative motion of
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the Earth and the stars, and the relative size of the Earth’s orbit to the distance of
the fixed stars. This dependency is present in both Ptolemy’s and Copernicus’s
system, and produces predictions that are equivalent up to the accuracy of
observations available at the time. In these details, we find a further lesson from
Kepler: It's these aspects of a theory -- the quantitatively precise dependencies of
the observables on the variations of particular parameters -- that need to be the
focus of our attention when we’re looking at equivalence across “theory change”.
Using this for our question about long-term stability of theories, the proposal is that
if we think of theories in this way, then developments at the level of species do not

threaten the genus.

[slides 15 and 16]

[s this answer any good? Well, in order for the genus/species argument to
work, it must be the case that all the observational successes of Ptolemaic
astronomy are due to the genus rather than the species. In order to assess whether
or not this is the case, let’s start by granting Kepler’s claim (from Mysterium
Cosmographicum, above) that geocentrism versus heliocentrism is a difference in
species, irrelevant to the observational success of Ptolemaic astronomy. Having
granted this (and set to one side the geocentric/heliocentric difference in species),
we can then examine whether all the observational successes of Ptolemaic
astronomy arise from the remaining genus (shared with the Copernican system), or
whether there are other differences in species that play a role in the observational
success of Ptolemaic astronomy.

Kepler formulated his genus-species argument in Mysterium
Cosmographicum, prior to his development of his laws of planetary motion. It turns
out to be instructive to consider his genus-species argument in the light of these
laws of planetary motion. Kepler’s laws and Ptolemy’s system are not geometrically
equivalent to one another, so the first question is whether we can make the same

genus-species argument there. It turns out that there are aspects where we can, but
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there is also a very important aspect where we can’t. And this is very informative, as

we will now see.

[slide 17]

In order to set the geocentric/heliocentric difference in species to one side,
so that we can see whether there are remaining significant differences in species, we
will consider the fictitious character Ptolemy II. Ptolemy II is Ptolemy’s younger
brother, who copied everything that his brother did, except that he was a bit wilder
and even more uncoventional than his brother: he was a heliocentrist! In other
words, he used all the same mathematical devices as Ptolemy, but used them in a
heliocentric system.

Now we can compare two heliocentric systems - Ptolemy II's with Kepler’s
Copernican system - in order to determine whether the observational successes of
the two theories arise from their common genus, or whether there are important
differences in species. We wil do this in two steps. First, we will identify those
features of Ptolemy II's system that are responsible for its observational success, as
compared to Kepler’s system. Then, we will ask whether these features belong to the
genus (as they need to in order for Kepler’s genus-species argument to work) or to

the species.

[slide 18]

First, let’s formulate the relevant parts of Ptolemy II's system in an analogous

manner to Kepler’s laws:
Kepler’s first law: The orbits of the planets are ellipses with the Sun at one focus.

Kepler’s second law: The planets move with equal areas in equal times about the

Sun.
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Ptolemy II's first law: The orbits of the planets are circles with the Sun offset from
the center.
Ptolemy II's second law: The planets move with equal areas in equal times about the

equant.

These laws produce observationally inequivalent planetary motions at the level of
accuracy achieved by Tycho Brahe. Prior to Brahe, they could not have been

distinguished observationally.

In order to understand the features of Ptolemy II's theory responsible for its
success, let’s first consider the approximation of both theories that is zeroth order in
eccentricity. Since ellipticity depends on ecccentricity, this means zero ellipticity as

well as zero eccentricity. In this case, the laws become:

Zeroth order in eccentricity approximation:

Kepler’s first law: The orbits of the planets are circles with the Sun at the center.
Kepler’s second law: The planets move with equal areas in equal times about the

Sun.

Ptolemy II's first law: The orbits of the planets are circles with the Sun at the center.
Ptolemy II's second law: The planets move with equal areas in equal times about the

center.

Thus, the first laws coincide exactly. Moreover, since the Sun is at the center, and
since in the case of a circle a radial segment sweeping out equal angles in equal
times will also sweep out equal areas in equal times, the second laws also coincide
exactly.

However, the eccentricity of the planetary orbits is observable with naked
eye observations, and was known in ancient astronomy. So the zeroth order

approximation will not do. Let’s move to the first order approximation in
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eccentricity. Since ellipticity depends on eccentricity squared, this first order
approximation will include ellipticity but not eccentricity. (The eccentricity of an
ellipse is a measure of the distance between the two focii, whereas its ellipticity
concerns its shape - it is an area effect, depending on the square of the distance.)

The laws then become:

First order in eccentricity approximation:

Kepler’s first law: The orbits of the planets are circles with the Sun offset from the
center.
Kepler’s second law: The planets move with equal areas in equal times about the

Sun.

Ptolemy II's first law: The orbits of the planets are circles with the Sun offset from
the center.
Ptolemy II's second law: The planets move with equal areas in equal times about the

equant.

As you can see, for Ptolemy II's laws, this first order “approximation” has no effect:
the two sets of laws are identical. Moreover, Ptolemy II's laws and Kepler’s laws to
first order give rise to very similar predictions. To see this, look at the animation on

slide 19.

[slide 19]

The red circle is the orbit of the planet. The Sun is the yellow dot, and the purple dot
(in the yellow circle) is the equant - located at an equal distance on the opposite
side of the center of the circle from the Sun. Set the animation into motion. The pale
blue dot is the position of the planet according to Kepler’s laws, to first order
approximation in eccentricity). The dark blue dot is the position of the planet

according to Ptolemy II's laws. In Kepler’s case, the line from the Sun to the planet
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sweeps out equal areas in equal times. In Ptolemy II's case, the line from the equant
to the planet sweeps out equal angles in equal times. As you can see, the predicted
positions of the planets deviate only slightly from one another. In fact, the
eccentricity shown in this diagram is much greater than that of the planets, and as
you reduce the eccentricity, and the Sun and equant move closer to the center of the
circle, the differences between the predictions of the two systems decreases. For the
actual eccentricities of the planets, the differences are less than observational
accuracy prior to Tycho, and they are therefore observationally equivalent up to the

observational accuracy of the time.

[slides 20 and 21]

In sum, the features of Ptolemy II's theory responsible for its observational success
concern first the shape of the orbits, and for Ptolemy II these are eccentric circles,
and second the speeds of the angular planets in their orbits, and for Ptolemy II these
are determined according to equal angles in equal times about the equant. To first-
order in eccentricity, which is observational accuracy prior to Tycho, Kepler and
Ptolemy II are observationally equivalent. Only when second order effects
(ellipticity) become observable, do the two come apart observationally.

With this in mind, we can now turn our attention to our second, and crucial,
question: Are the features that are responsible for the observational success of
Ptolemy II's theory, as compared to Kepler’s theory, features of the genus (as is
needed for Kepler’s argument to go through) or features of the species?

Consider first shape. The eccentric circle is an approximation of an ellipse
and a focus, so here Ptolemy Il and Kepler share the same genus.

Now consider speed. In this case, Ptolemy II's theory correlates different
parameters with the observations (angles to time times about the equant) as
compared to Kepler (areas to times about the Sun). This is a difference in species.
The two happen to coincide to a high level of approximation for small eccentricity,

but diverge as the eccentricity increases.
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[slide 22]

What happened was that, for a very long time in the history of astronomy, we
were tricked by an accident of our local circumstances. Had the eccentricity of the
orbits of the planets in our planetary system been greater, the two possibilities
under consideration (equal angles in equal times about the equant, and equal areas
in equal times about the Sun), would have come apart observationally. But the orbits
of our planets have very low eccentricity, and it takes very high eccentricity to make
the two observationally inequivalent. We have here a very important epistemic
lesson: a misleading situation in our local circumstances can leave us with an error
that can persist for a very long time. (See Julian Barbour, Absolute or relative
motion?)

In light of this epistemic lesson, we need to modify what we had learned

thusfar from Kepler.

[slide 23]

Here is where we are:

Modal dependencies among the parameters and observables of a theory are what
are stable and likely to last; i.e. the modal structure underlying the observable
phenomena. We can use this as a guide to what will survive theory change (genus
versus species). Nevertheless, this methodological proposal is not infallible. As we
have seen, our local circumstances may be misleading, producing long-term
observational equivalence despite modal inequivalence (with an unconceived
alternative, perhaps). In light of this hugely important realization comes the
recognition of one reason why observational precision and quantitative details in
the phenomena matter: mere approximate consistency with the observable
phenomena doesn’t protect us against this type of error - it doesn’t have enough
epistemic bite) - what led to the discovery of the “equant error” was high precision

observations and careful attention to these observational details in theorizing.
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This is a methodological lesson that was brought to rich fruition by Newton,
as has been beautifully argued by George Smith (see his Closing the Loop), and is
central to the discussions of Newton'’s Principia by both George Smith and Bill

Harper. But that is to get ahead.

3. Descartes

[slide 24]

In Part III of Descartes’s Principles of Philosophy, Descartes considers the three basic
systems of mathematical astronomy available at the time: Ptolemaic, Tyychonic, and
Copernican. The Principles was published in 1644, long after Galileo’s 1613
publication of his observations of the phases of Venus. The observed phases are
inconsistent with Ptolemy’s system, but they are consistent with Tycho’s and
Copernicus’s, so Descartes rejects Ptolemy’s system (Principles I11.16) and takes the
dispute over the system of the world to be between Tycho’s geocentric system and
Copernicus’s heliocentric system.

Descartes accepted both the geometrical and the observational equivalence
of these two systems. Notice that this is more than 30 years after the publication of
Kepler’'s Astronomia Nova, in which Kepler offered a version of the Copernican
system that is observationally inequivalent to Tycho’s. Descartes did not consider
that this offered good grounds for favoring the Copernican system (for reasons [ will
come back to below), and this is important for our purposes, because it reminds us
that observational inequivalence is not (always) sufficient for deciding in favor of
one theory over another.

Descartes argued for Copernicus’s system of the basis of virtue inequivalence,

and in his case he appealed to the virtues of causality and unification.

[slide 25]

21



Descartes’s argument for the Copernican system, briefly summarized, runs as
follows. He begins from his theory of matter, which is in turn based on his criterion
of clear and distinct ideas (his principle of intelligibility). This tells us that the
principal attribute of matter is extension, and that the world is made of little bits of
matter in relative motion with respect to one another. According to this theory of
matter, there is matter in motion everywhere. Descartes claims that this matter in
the heavens must be fluid (II1.24) and that this fluid is everywhere and carries the
bodies (the planets) along with it (II1.25). With this background in place, Descartes
then argues as follows. Since Tycho’s model involves intersecting orbits, no such
fluid account can be consistent with it (this point comes out in I11.39), but
Copernicus’s model does not involve intersecting orbits, so a fluid account is not
automatically inconsistent with it. Therefore, we should reject Tycho’s system and
accept Copernicus’s. As notes above, this is an argument based on causality and
unification. First, it sets up a causal account of planetary motion, based on a
background matter theory. Then, it seeks to embed each of the available theories of
mathematical astronomy within that causal account, and shows that only one of the
two theories can be so embedded (the Copernican theory). Thus, we can have a
successful unification between planetary motion and our broader physics if we

adopt Copernican theory over Tychonic theory.

[slide 26]

For our purposes, it is important to note the the criterion of success here
involves qualitative (or at most approximate quantitative) consistency between the
theory and the observed phenomena. Descartes claims in Principles Part III that all
the observations of the planetary motions are consistent with his vortex theory,
including that the shapes of the orbits are not perfectly circular (I11.34), and the
latitudinal and longitudinal variations (I11.35&36), and concludes (I11.37) that “all
the phenomena of the Planets can be explained by the hypothesis proposed here.” In
other words, qualitative consistency with the observed phenomena is sufficient for

acceptance of the theory.
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This goes against our methodological lesson from Kepler, but Descartes had
good reason for it. According to his matter theory, the planets’ motion arises from
constant collisions, and it is only the coarse-grained motions that are potentially
informative. The fine-grained motions arise from innumerable collisions, and there
is no good reason to think that they follow any precise mathematical laws.
Moreover, the coarse-grained motions are likely to be temporary, and subject to
change over time. Therefore, from the perspective of Descartes’s matter theory, the
details of the planetary motions are epistemically impotent.

Descartes could have been right about this. It turns out that he wasn't (see
George Smith’s Closing the Loop), but this has to do with special features of our
planetary system and of gravitation, which we have come to understand only much
later. So we must introduce another note of caution to the lessons taken away from
our discussion of Kepler, in section 2, above. [t may turn out that not all systems
(perhaps certain kinds of nonlinear systems, for example) will be appropriately

tackled by the methodology suggested there.

[slide 27]

There is another lesson from Descartes that is important for our topic of
(in)equivalent theories. The upshot of Descartes’s methodology is radical
underdetermination. In Principles Part IV, paragraph 204, he writes: “it suffices if |
have explained what imperceptible things may be like, even if perhaps they are not

so.” And he then elaborates as follows:

“For just as the same artisan can make two clocks which indicate the hours
equally well and are exactly similar externally, but are internally composed
of an entirely dissimilar combination of small wheels: so there is no doubt
that the greatest Artificer of things could have made all those things which

we see in many diverse ways.”
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In other words, the same observable phenomena are compatible with many
different accounts of the arrangements and motions of the imperceptible parts: we
have a proliferation of observationally equivalent theories, and no means to decide
between them. The lesson is clear: the principle of clear and distinct ideas, plus
causality and unification, by themselves lack the epistemic purchase we are looking

for if we are to address the problem of observationally equivalent theories.

4..Lessons in methodology: Du Chatelet, Institutions de Physique (1740)

[slide 28]

[ am now going to skip ahead 100 years, to the methdological lessons learned in the
wake of the geocentric/heliocentric dispute, or the dispute over the “system of the
world”. Book 3 of Newton’s Principia is entitled “The System of the World”, and the
entire Principia is directed towards the resolution of this problem. Even a
generation after this, not everyone took the dispute to have been settled, but
enormous progress had been made on methodology. There is a great deal that |
could (and should) say about the methodological developments wrought by Newton
himself, but I don’t have the time (in my talk) or the space (in this written version)
to discuss both Newton and Du Chatelet, and Newton’s methodology has been the
subject of much excellent recent scholarship, so I will skip forwards to Du Chatelet.
Du Chatelet was writing in France at a time when Cartesian physics is
dominant. Du Chatelet begins her Institutions de Physique by praising Descartes’s
many important contributions to physics, but then turns her attentions to failures of
his method. By the time she was writing, there had been a proliferation of Cartesian
hypotheses put forward to explain all manner of phenomena. Du Chatelet writes
(Institutions, Chapter 4, para 55) that “the books of philosophy, which should have
been collections of truths, were filled with fables and reveries”. So the question is
pressing: How can we break the equivalence between all these hypotheses, and

arrive at theories that are stable and likely to last?
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[slide 29]

Du Chatelet insists that an improved methodology is needed. Specifically, we
must reject “clear and distinct ideas” as the principle of intelligibiity by which to
judge hypotheses, not least because this principle is too subjective. She argues that
we should adopt the principle of sufficient reason (and especially the principle of
continuity, which she argues is a corollary of the principle of sufficient reason)
instead (see Institutions 1.8). She also argues that we should reject “mere
compatibility” with what has already been observed as the empirical standard by
which to judge hypotheses: hypotheses must have testable observational
consequences, and we must pursue all the observational consequences of a

hypothesis.

[slides 30 and 31]

Du Chatelet advocates strengthening our use of both (i) virtue inequivalence
and (ii) observational and empirical inequivalence.

In the case of virtiue in equivalence, her primary emphasis is on the principle
of sufficient reason. According to Du Chatelet, the principle of continuity follows
from the principle of sufficient reason, and in her hands both these principles
receive a causal interpretation, concerning the relationship between successive
states of a system. (Her elaboration of this is super fascinating, and has a long-
lasting impact, with her discussion of continuity having been quoted in the
Encyclopedie of Diderot and D’Alembert, and her powerful anticipation of what
became known as Laplace’s demon.)

A second methodologically important type of virtue inequivalence for Du
Chatelet is simplicity. She discusses at length the constraints that we need to place
on our hypothesizing. She writes that “it is necessary... that the phenomenon result
necessarily, and without the obligation to make new suppositions”, and goes on:
“When the necessary consequences do not follow from it, and to explain the

phenomenon, a new hypothesis must be created in order to use the first, this
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hypothesis is only a fiction unworthy of a philosopher.” (Institutions 4.69) In this
way, she argues for simplicity and against ad hoc hypotheses.

A third methodologically important virtue emphasized by Du Chatelet is
unification. We have seen that this was important for Descartes, and it was also
important for Newton, whom Du Chatelet studied carefull but whom we have not
discussed. Du Chatelet insists from the outset on the Cartesian ideal of a single
matter thoery by which to account for all observable phenomena, both animate and

inanimate, and boh celestial and terrestrial.

[slide 32]

Turning to observational and empirical inequivalence, Du Chatelet discusses
in detail the ways in which the observational consequences of a theory must be
worked out in every detail and tested empirically. Empirical tests are a stern master,
and empirical falsification a powerful tool. She writes (Institutions, 4.64):

“One experiment is not enough for a hypothesis to be accepted, but a single

one suffices to reject it when it is contrary to it.”

She elaborates further in the ensuing paragraphs. For example (4.66):

“Thus, in making a hypothesis one must deduce all the consequences that can

legitimately be deduced, and next compare them, with experiment; for

should all these consequences by confirmed by experiments, the probability
would be greatest. But if there is a single one contrary to them, either the
entire hypothesis must be rejected, if this consequence follows from the
entire hypothesis, or that part of the hypothesis from which it necessarily
follows.”
As we see even from these brief extracts, Du Chatelet discusses falsification,
conditions for acceptance of theories, and is explicit that falsification may be
selective, applying to only parts of the theory (this echoing the genus/species

distinction that we saw in Kepler).
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(As Jim Weatherall pointed out in discussion after my talk, this is an early
text - 1740 - in which to find discussion of raising the probability of a hypothesis

through experimental confirmation of the consequences of the hypothesis.)

[slide 33]

Jointly, the use of theoretical virtues and observations of empirical
consequences of hypotheses, push the development of scientific theories forwards
in a way that achieves two important methodological goals. First, the proposed
methodology keeps the competition manageable, by ruling out (fallibly) any
(unconceived) alternatives that don’t satisfy the principles of intelligibility. (Here it
would be important to compare Du Chatelet with Newton'’s 4th rule of reasoning, but
[ have no time or space to do that here.) For example, the resources of Newton’s
Principia rule out the Tychonic system only by means of the rule “no forces without
sources”, which is a causal principle with its roots in Kepler (as we saw above). In
other words, we need to appeal to virtue inequivalence to decide whether the Sun or
the Earth is more nearly at rest. (See also George Smith’s discussion of a manuscript
in which Newton wrestles with ruling out the Tychonic system.)

Second, the methodology insists that we actively seek observational
inequivalence between alternative theories. Once again, there are no guarantees
that we will be successful, but we are required to try. An example of this is Du
Chatelet’s discussion of Huygens and Newton on gravitation, in which she makes
vivid that tiny quantitative differences can make all the difference. [ will end my

discussion of Du Chatelet by spelling out this example in more detail.

[slide 34]

Du Chatelet discusses Huygens’ vortex theory of gravitation, which contains

no particle-to-particle gravitational interaction, and Newton'’s theory of universal

gravitation, and the question of how we are to decide between these two theories.
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Back in his Principia, Newton had argued that no vortex theory could
reproduce the trajectories of the planets (call these the “bulk” motions), thereby
arguing for the observational inequivalence of his theory as compared to vortext
theories (see Principia, Book 2, Section 9, Scholium to Proposition 53). However,
this argument depends on assumptions and idealizations about fluids. Huygens,
Bernoulli and others rejected these assumptions and developed vortext theories
intended to recover the observed bulk motions. If correct, the upshot would be

observational equivalence with Newton's theory, at least for bulk motions.

[slide 35]

Given observational equivalence for bulk motions, how should we decide
between these theories. As we have seen, Du Chatelet insists on including both
observational and virtue considerations in theorizing, so perhaps the place to turn is
to seek virtue inequivalence. According to Du Chatelet, Huygens’ theory satisfies the
principle of sufficient reason, whereas Nweton'’s theory (as an action-at-a-distance
theory) does not. Thus, virtue inequivalence favors Huygens’s theory.

However, according to Du Chatelet’s methodological considerations, we must
not stop there. Rather, we must seek empirical equivalences and try to turn them

into observational equivalences.

[slide 36]

Du Chatelet is very clear about exactly where those empirical inequivalences
lie, and she is completely up-to-date on the observational evidence relating to these
empirical inequivalences. Recall the difference between Newton’s and Huygens’
theories mentioned above. According to Newton, gravitation acts from particle to
particle, including on and between the interior particles of a given body: “Therefore
the gravity toward the whole planet arises from and is compounded of the gravity
toward the individual parts.” (Newton, Principia, Book 3, Proposition 7, Corollary 1)

This is universal gravitation. Huygens responded to this by rejecting the step in
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Newton’s argument that takes him from the motions of the planets (“bulk motions”)
to “universal gravitation”. Thus, for Huygens, if we can recover the bulk motions, the
challenge from Newtonian gravitation has been met. The key question for us is
whether, in this difference over universal gravitation, we can find the resources to

generate an empirical inequivalence.

[slide 37]

As Du Chatelet discusses, by the 1730s an empirical difference had been
uncovered between the two theories, and this was fast becoming an observational
inequivalence. In Chapter 15, para 379, of the Institutions, Du Chatelet states:

“M. Huygens believed the gravity to be the same everywhere [because it

pertains to the body considered as a whole], and Newton assumed it to be

different in different places on earth and dependent on the mutual attraction
of the parts of matter: the only difference between them is the shape they
attribute to the earth - since from M. Newton'’s theory arises a greater
flattening than from that of M. Huygens.”
Thus, Du Chatelet is very clear about the difference between the two approaches
being due to the disagreement over universal gravitation (i.e. whether it is particle
to particle or not), and on where the observational consequences differ. The
empirical inequivalence, and its source, between the two theories is clearly

articulated.

[slide 38]

Moreover, Du Chatelet is up to date with the efforts to measure the shape of
the Earth, and is awaiting further results that will help to determine the question
between Huygens and Newton. She says that initial results from the measurements
taken on the expedition to the pole led by Maupertuis favor Newton:

“The one that comes from the measurements at the Pole is approximately as

the one that M. Newton had determined with his theory. Thus, it is true to say
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that M. Newton made great discoveries owing to the measurements and
observations of the French and that he will most likely receive confirmation.”
(Institutions, 15.384)

This makes it look as though observation is decisive.

[slide 39]

However, recall that Du Chatelet’s methodology requires the pursuit (perhaps
indefinitely, she suggests, given our epistemic capacities) of an interplay between
the observational and the virtues. Du Chatelet’s retains a hope that a PSR-satisfying
theory might one day be found, and so she cautions against throwing out the genus
for the species. She writes that it remains “to be examined if some subtle matter is
not the cause of this phenomenon... perhaps a time will come when we will explain
in detail the directions, movements, and combinations of fluids that operate the
phenomena that the Newtonians explain by attraction, and that is an investigation
with which the physicians must occupy themselves.” In other words, since our
theory does not satisfy our theoretical virtues, we cannot consider out work done.
Rather, we must press forwards in seeking to develop our theory in line with both

our observational and our virtue criteria.

[slide 40]

Let’s sum up where we are by 1740, the date of Du Chatelet’s Institutions.
First of all, in order to constrain the multiplication of observationally equivalent
theories, we need to use theoretical virtues as well as observational evidence.
Observational inequivalence in theory choice is necessary but not sufficient. It is
central to Du Chéatelet’s methodology that we actively seek observational
inequivalence, and especially precise, quantitative observational inequivalence.
Moreover, observational inequivalence is an important criterion of theory choice
(recall her emphasis on falsification). Nevertheless, even if a theory meets the

stringent observational tests discussed by Du Chatelet, we must not rest there if our
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theory does not also satisfy our principles (our virtues). These work in tandem with
the observational criteria, and have a powerful epistemic role in Du Chatelet’s
methodology. Moreover, observational evidence must be handled with care, and I
particular we must be careful not to throw out the genus for faults of the species.
Finally, as Du Chatelet emphasizes, all of this is fallible.

So, given this methodology, which developed to a great extent in response to
the epistemic challenge posed by the observational equivalence of Ptolemy versus
Copernicus, what (if anything) is stable and likely to last? [ will address that

question as part of my closing remarks, in the final section.

5. Concluding remarks

[slide 41]

[ began with the question “Given two observationally equivalent theories, how
should we respond?”, and separated this into two questions: “How (if at all) do we
decide between them?”, and “How (if at all) can we establish something in the
sciences that is stable and likely to last?”. What have we learned?

With respect to the first question, in the case of Ptolemy versus Copernicus
we saw a diachronic process of mobilizing different forms of inequivalence towards
deciding between them, and an emerging consensus that (contra Descartes)
achieving observational inequivalence is necessary (though not sufficient) for

making a decision.

[slide 42]

The main kinds of (in)equivalences that we saw doing work were:
observational; empirical; modal; and virtue. Under “virtue”, I included such
considerations as simplicity, harmony, causality, and unification; principles of
intelligibility such as Descartes’s clear and distinct ideas and the principle of

sufficient reason; and the principle of continuity. Another important example that
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came to the fore in the seventeenth century is that of conservation laws. An example

from the twentieth century is symmetry principles.

[slide 43]

The second question asks about what elements of our theories, if any, are
stable and likely to last. On the basis of the methodology that we saw developing
during this period, we can conclude that certainly it is not “theories as descriptively
true stories about the world”. This is from van Fraassen’s highly influential
characterization of scientific realism, and in light of what we have seen, it is clear
that adopting such an aim for science would result in a mismatch between the
methodology and the stated aim. In particular, this characterization of the aim of
science has no sensitivity to Kepler’s genus/species distinction (reflected in Du
Chatelet’s discussion), nor to the central role of modal dependencies among the
parameters and observables (what are the observationally relevant parameters, and
if I fiddle with this by exactly this amount, what precisely happens to that?) in

enabling scientific theories to do the work that they do.

[slide 44]

If we try to fit our characterization of the aims of science to what the
methodology has been developed to deliver, then perhaps we might try something

like this:
“An aim of science is to provide a set of modal dependencies adequate to the
observable phenomena. Realism is a commitment to these modal

dependencies as underlying the observable phenomena.”

Theories are sometimes a good tool for discovering and expressing these modal

dependencies.
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One reason I like this is because it evades Kyle Stanford’s circularity
challenge (we can discover that we've been systematically misled, recall Ptolemy II).

In sum, by 1740 we have a methodology by which we know what we need to
do to decide between observationally equivalent theories. In addition, we have no
good reason to think that the results that this methodology delivers (the modal
dependencies) are unlikely to survive theory-change. Moreover, if we are feeling in a
realist frame of mind, we can note that our commitment to these results is a
commitment beyond the phenomena, to the underlying modal dependencies, and so

is a form of realism.

[slide 45]

Conclusion: We have the resources to address the epistemic challenge from

observationally equivalent theories.

Thank you.

My talk was followed by a most enjoyable discussion period. My thanks to all those who

made such interesting points and asked such excellent questions. Thanks also to the

organizers of the event, and especially the local organizer Hans Halvorsen.
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